Kepingan Sang Bintang: Ragam Bentuk Kristal Air dan Kristal Es


Dr.Masaru Emoto berhasil mendapatkan foto kristal air pertama di dunia bersama sahabatnya Kazuya Ishibashi (seorang ilmuwan yang ahli dalam mikroskop). Foto kristal air ini didapat dengan cara membekukan air pada suhu -25 derajat celcius dan difoto dengan alat foto berkecepatan tinggi. Hasilnya adalah air ternyata mampu merespon terhadap kata-kata, gambar serta musik baik secara positif ataupun negatif.

Air adalah Sumber Kehidupan, Tanpa Air makhluk hidup akan mati. Bayangkan saja ketika kita dilanda Kemarau berkepanjangan, Begitu sulit mendapatkan air, bahkan sampai ada yang saling berebut untuk mendapatkan air, itulah sebabnya air menjadi kebutuhan yang sangat pokok untuk kelangsungan kehidupan di alam semesta ini. Tahukah bahwasanya air memiliki keajaiban yang sangat luar biasa!! Ternyata air dapat mendengar dan molekulnya berubah bentuk.

Molekul tersebut dikenal dengan nama Kristal air dan secara alami terbentuk pada saat turunnya hujan salju, umumnya berbentuk segi lima atau enam dengan variasi bentuk pada masing-masing ujungnya. Yang mengherankan, formasi kristal air dapat berupa bentuk yang sangat rumit dan simetris.
Dr Masaru Emoto dari Jepang telah memulai penelitian terhadap kristal air ini. Pertama yang diteliti Air murni dari mata air di Pulau Honshu lalu didinginkan sampai -5oC di laboratorium, lantas difoto dengan mikroskop elektron dengan kamera kecepatan tinggi.

Diagram Morfologi

Diagram of snow crystal patterns as functions of temperature and the excess vapor density. This diagram was revised from the original Nakaya Diagram by Kobayashi. The excess vapor density is easily translated to the supersaturation; namely, (supersaturation)=(excess vapor density)/(equilibrium vapor density).

Dengan menumbuhkan kristal salju di laboratorium dalam kondisi yang terkendali, orang menemukan bahwa bentuk mereka tergantung pada suhu dan kelembaban. Perilaku ini diringkas dalam “diagram morfologi” yang memberikan bentuk kristal dalam kondisi yang berbeda.

Mengapa salju kristal berubah bentuk begitu banyak dengan suhu tetap sesuatu misteri yang ilmiah. Pertumbuhan ini tergantung pada bagaimana molekul uap air yang dimasukkan ke dalam kristal es tumbuh, dan fisik di balik ini sangat kompleks dan tidak dipahami dengan baik.

Schematic illustration of the basic changes of snow crystal shapes. (a) plate, (b) prism, (c) dendrite and (d) needle.

(a) Crystallographic structure of ice I(h). Open and solid spheres indicate the oxygen and hydrogen atoms, respectively. Each oxygen atom is connected with four neighboring oxygen atoms by hydrogen bonds (thin solid lines), which makes a tetrapod arrangement.

(b) Illustration for the corresponding crystallographic axes and planes. Basal and prism faces correspond to the {0001} and {1010}faces, respectively.

Sketches of growth process from a spherical ice crystal to a hexagonal prism[15]. Faces with the lowest growth velocities appear and extend to cover the whole crystallite, and finally a fundamental shape of snow crystal with the aspect ratio, lc/la ~1, is formed. The ratios of growth velocities between {0001} and {1010} faces determine the habit of snow crystal.

Schematic representation to explain the habit change of snow crystal. Upper and lower parts show the surface structure changes for the {0001} and {1010} faces, respectively.

Thickness of quasi-liquid layers on ice surface measured by an ellipsometry. Solid and open squares indicate the results for {0001} and {1010} faces, respectively. In this figure, roughening temperatures expected from the observation of ice crystal shapes also are indicated[34]. That is, the roughening temperature for {1010} face was -2oC, but the roughening transition was not observed even at the melting point. It should be also noted that these experimental values were higher than the theoretical prospect to explain the habit change of snow crystal. This discrepancy is still in the challenge of research.

Ice surface structures on molecular scale, which was obtained for the {0001} face (a) and {1010} face (b), by the molecular dynamics simulations[37]. The illustrations are projected along the [1120] axis for the former and the [0001] axis for the latter. Red and white spheres indicate oxygen and hydrogen atoms, respectively. Note that each oxygen atom is accompanied by two hydrogen atoms to form a water molecule. Simulation temperature is 255K.

Schematic illustration of diffusion field around a polyhedral crystal. The water molecules are transferred through the vapor phase from the surrounding supercooled cloud droplets to the snow crystal.

Time-sequence illustration of a growing snow crystal, obtained by a computer simulation[41]. A circular plate crystal, which is an initial shape in this simulation, grows into a hexagonal plate, and finally the hexagonal dendrite develops. Numbers on the right hand side indicate the growth times in second. Supersaturations of environment are 0.17 and 0.34 for (a) and (b), respectively.

*Sorry, but currently, there is no available picture.

Magono and Lee Classification of Snow Crystals Part 2 For More Detail Click Here

Water, Consciousness & Intent: Dr. Masaru Emoto

Water: Top Secret Masaru Emoto

Special Thanks To 🙂

Dr. Masaru Emoto,

Rokuro Yoshida,

Yoshinori Furukawa. Institute of Low Temperature Science Hokkaido University Japan-http://www.lowtem.hokudai.ac.jp

Kenneth G. Libbrecht snowflake photomicroscopeSnowCrystals.com, www.its.caltech.edu

Wilson Bentley-http://www.snowflakebentley.com

Hermes Sarapuu-http://www.hot.ee

Mark Cassino Photography-http://www.markcassino.com

Kinsman Physics Productions-http://www.sciencephotography.com

William Wergin-Low Temperature Scanning Electron Microscope (LT-SEM)-http://www.emu.arsusda.gov/snowsite/default.html

Electron and Confocal Microscopy Laboratory, Agricultural Research Service, U. S. Department of Agriculture.

W. A. Bentley and W. J. Humphreys, Snow Crystals (Dover, 1962) The original book was published by McGraw-Hill in 1931.
U. Nakaya, Snow Crystals: Natural and Artificial (Harvard University Press, 1954).
W. Tape, Atmospheric Halos, Antarctic Research Series, Vol. 64, (American Geophysical Union, 1994).

Iklan